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Abstract

Recent environmental regulations have used market incentives to reduce compliance costs
and improve efficiency. In most cases, the Environmental Protection Agency (EPA) selects an
emissions cap using the predicted costs of reducing pollution. The EPA and other economists
have used a "bottom-up" approach to predict the costs of such regulations, which forecast how
every affected firm will respond. It is uncertain whether firms rely on the same predictions in
making their compliance decisions. This paper uses stock prices to compare the predictions of
the bottom-up studies with those of the affected firms.
I focus on a recent tradable permit program, the Nitrogen Oxides Budget Trading Program

(NBP). Started in 2004, the NBP requires electric generators in the Midwest and East to reduce
their emissions or purchase permits from other firms. I compare utilities’ stock prices with the
prices that would have occurred in the absence of the new regulation. I make this comparison by
exploiting variation in the location of generators owned by utilities; the control group consists
of utilities without any generators in the NBP. I estimate that investors expected the program
to reduce profits by about $2 billion per year (2000 dollars). Investors expected the NBP to
primarily affect coal generators, which have larger baseline emission rates than other fossil fuel
generators. These results agree with previous studies that used the bottom-up approach.
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1 Introduction

Following the Acid Rain Program, which reduced sulfur dioxide emissions from power plants,

there has been a dramatic increase in market based environmental regulations. These programs

place a cap on emissions and allow firms to trade permits to reduce compliance costs. For

example, the Clean Air Interstate Rule, recently adopted by the Environmental Protection

Agency (EPA), will expand existing sulfur dioxide and nitrogen oxides (NOx) permit programs.

In the past few years, members of Congress and local governments have proposed a variety of

tradable permit programs aimed at reducing greenhouse gas emissions.

Cost predictions have played an important role in justifying the permit programs and deter-

mining the emissions caps. Previous research (e.g., Ellerman et al., 2000) uses a “bottom-up”,

or engineering-based approach to forecast costs. These studies simulate a detailed model of

electricity supply and demand to predict each firm’s response to a given policy. As documented

by Carlson et al., 2000, and Ellerman, 2003, most bottom-up estimates significantly over-predict

the costs of the Acid Rain Program in the early 1990s.

The EPA has relied on these engineering-based studies to select emissions caps for programs

after the Acid Rain Program. It is uncertain whether investors and utilities continue to agree

with these predictions after becoming aware of the earlier over-estimates. Disagreement between

utilities’ and the EPA’s expectations could arise either because the bottom-up studies did not

incorporate an important aspect of the regulation, or because utilities did not understand the

regulation’s effects. Firms would not comply as the EPA expected them to, which could limit

the cost effectiveness of the market-based policy or lead to an inefficient reduction of emissions.

This paper describes a new approach, using stock prices to estimate investors’ and firms’

expectations. I focus on a recent program, the NOx Budget Trading Program (NBP). Assuming

that firms are rational and investors are forward looking, I can directly compare firms’ predictions

with those of the bottom-up studies. The NBP began in 2004, and places a cap on NOx

emissions from electric utilities and manufacturing plants in the Midwest and East Coast. Prior

to enactment, several studies (EPA, 1998 and Palmer et al., 2001) made similar estimates of

about $2.2 billion per year.1 When the EPA proposed the NBP in the late 1990s, firms were

aware that earlier studies had overestimated costs of the Acid Rain Program; they may no longer

have trusted this method.
1These estimates differ slightly because of the choice of baseline emissions and the plants included in the

analysis. There are several other estimates, using similar methodologies, for the Ozone Transport Commission
program, which covered electric utilities in the Northeast, and for the NBP. See, for example, Farrell, et al.
(1999) and Krupnick et al. (2000). The latter analyses a subset of states in the NBP, and is less comparable to
this paper than the Palmer et al. study.
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In comparison, investors expected the NBP to reduce profits by $2 billion per year.2 This

figure includes the effect of compliance costs and changes in revenue. On the other hand, the

engineering-based estimates include only compliance costs. The EPA argues that electricity

prices would increase and that the change in profits would be small; on the other hand, Palmer

et al. predict that utilities would bear nearly all the costs. My results agree with the Palmer et

al. prediction that profits would fall dramatically, although investors may have expected higher

compliance costs as well as a larger increase in revenue. It appears that investors continue to

rely on the bottom-up estimates.

The empirical strategy uses changes in stock prices to predict the cost of the NBP, and

consists of two stages. First, I estimate the stock prices of utilities in the absence of regulation,

which I refer to as the counterfactual stock price. More specifically, from 1990-1995 there was

little discussion of regulating NOx emissions in the Midwest and Southeast. In 1996 the EPA

considered implementing a tradable permit program to reduce emissions in these regions, and

made a formal proposal in 1998. A number of states and utilities sued the EPA to prevent the

program, but on March 3, 2000, the D.C. Court of Appeals ruled in favor of the EPA, allowing

it to proceed. I exploit variation in the location of utilities to construct a control group, which

consists of utilities located in the western United States; the NBP did not affect their stock

prices. I use daily stock price data from the Center for Research in Security Prices (CRSP) to

estimate the relationship between the stock prices of the NBP and western utilities in the initial

period, 1990-1995. I assume this relationship would have held in the absence of regulation. I

use the actual stock prices of the control group from 1996-2000 to estimate the counterfactual

stock prices of the NBP firms. After the court decision, investors knew with certainty that the

NBP would occur. The difference between the actual and counterfactual stock prices at that

time was proportional to the expected cost of the NBP.

In the second stage I characterize how the NBP would affect different types of generators. For

a given firm, the effect of the NBP is proportional to the number of generators in the program.

I estimate an Ordinary Least Squares (OLS) regression where the dependent variable is the

difference between the actual and counterfactual stock prices for each utility. The independent

variables are the number of coal, natural gas and oil generators the firm owns in the NBP region,

obtained from the Department of Energy (DOE). The coefficients correspond to the changes in

expected profits per generator, which I refer to as the expected net cost. I use the estimated

coefficients to calculate the total net cost for all firms in the NBP.
2This analysis is comparable to the EPA and Palmer et al. studies because it measures the effect of the NBP

on the same set of generators. The NBP also includes some large manufacturing plants, which are not included
in the previous studies or in this paper. The EPA expected that electricity generators would account for about
90 percent of the reduction in emissions, so the analysis probably incorporates most of the effect of the NBP.
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This approach allows me to characterize how the NBP would affect different generators.

Coal generators, which have higher emission rates than natural gas and oil, would bear nearly

all the net costs. The results agree with previous predictions that due to the high fixed costs of

the primary control technology (selective catalytic reduction) large coal generators would adopt

the technology. These generators would be able to sell excess permits. Small generators would

purchase permits or modify their boilers, and would have higher costs per unit of output. The

results suggest that investors expected small generators to be more adversely affected.

The change in expected profits for oil and natural gas generators is close to zero. There is

evidence that natural gas generators became more valuable, although the estimate is insignifi-

cant. These results reflect differences in emission rates across the types of generators, and agree

with the EPA’s predictions.

The empirical strategy is similar to a traditional event study, which would use a Capital

Asset Pricing Model (CAPM) to estimate abnormal returns. The regression in the first stage

that yields the counterfactual stock prices is identical to the CAPM. The difference is that the

CAPM calculates the cost of the NBP from abnormal returns; I use the difference between the

actual and counterfactual stock prices. The drawback of the CAPM is that the model cannot

simultaneously allow for a linear relationship between the number of generators and the cost of

the NBP, and estimate separate effects for different types of generators. For this reason I prefer

the two stage approach, but I obtain similar results with a CAPM.

There are two considerations with estimating the effect of the NBP. Kahn and Knittel (2002)

find that the enactment of the Acid Rain Program in 1990 did not affect the stock prices of

electric utilities. They argue that state regulators would raise electricity prices to allow utilities

to recover the compliance costs, and there would be no effect on profits. In contrast, the NBP was

proposed in the late 1990s, as the restructuring of the electricity industry proceeded.3 Investors

did not expect utilities to recover costs (which explains why many utilities sued the EPA), and

the program caused stock prices to fall.

Similar to this study, Ellison and Mullin (2001) consider an event in which investors learn

about the cost of a policy over a period of several years. They use an isotonic regression

to estimate the effect of potential health care reform on the stock prices of pharmaceutical

companies in the early 1990s. I obtain similar results using an isotonic regression to those

reported in the text.

Two other tradable permit programs demonstrate the need to compare firms’ and the EPA’s

cost estimates. As mentioned above, ex ante cost estimates of the Acid Rain Program were too

3Recall that the Michigan decision occurred before the California energy crisis, when the majority of states
were expected to restructure.
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high. More recently, the Illinois Environmental Protection Agency (IEPA) initiated a permit

program for volatile organic compounds (a precursor to ground-level ozone), which includes

manufacturing plants in the Chicago metropolitan area. It appears that actual compliance costs

have been lower than expected, and the IEPA committed to allocating too many permits. The

market has not functioned well, with few trades and a permit price close to zero. Kosobud et

al. (2006) argue that the program has not caused any reductions in emissions.

The paper proceeds as follows. The next section outlines the history of the NBP. Section

3 discusses the empirical strategy for estimating the change in expected profits, and section 4

describes the data. Section 5 presents the results and section 6 concludes.

2 The NOx Budget Trading Program

I discuss the effect of the NBP and the appellate court decision on stock prices. Had the court

ruled against the EPA, utilities in the Midwest and Southeast would have been regulated under

the 1990 Clean Air Act Amendments. This is the counterfactual against which I measure costs

in the empirical work.

2.1 Historical Background

In the mid 1990s, several northeastern states claimed that because of prevailing winds, NOx

emissions from the Southeast and Midwest were preventing them from complying with the Clean

Air Act requirements for ozone (NOx is an ozone precursor). They argued that the EPA should

restrict NOx emissions from the Midwest and Southeast.

In June, 1995, the Ozone Transport Assessment Group convened, consisting of representatives

from 37 states and Washington, D. C. In June, 1997, the Ozone Transport Assessment Group

recommended that the EPA establish a NOx tradable permit system covering the East and

Midwest.

Based on this report, in September, 1998, the EPA proposed a program to reduce emissions.

The EPA’s air pollution modeling had determined that pollution from 14 states contributed

significantly to ozone levels in the Northeast. The NBP would include Alabama, Georgia, Illinois,

Indiana, Kentucky, Michigan, Missouri, North Carolina, Ohio, South Carolina, Tennessee, West

Virginia and Virginia and Wisconsin. Northeastern utilities belonged to a previous NOx permit

program, the Ozone Transport Commission; utilities in that program would join the NBP.4 With

the exception of Florida, the program would cover the entire Midwest and East. In this paper

4The Ozone Transport Commission included Connecticut, Delaware, Massachusetts, Maryland, New Jersey,
New York, Pennsylvania, Rhode Island and Washington, D.C.
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the term NBP region refers to states in the Southeast and Midwest, and NBP utilities include

utilities with fossil fuel generators in the NBP region. In other words, this paper examines the

effect of expanding the NOx permit program to the Midwest and Southeast.

In its proposal, each year the EPA would give states a pre-determined number of NOx

permits. The states would allocate the permits to firms, and the EPA would help coordinate

a trading program, in which firms could buy and sell permits (cross-state transactions were

permitted). All firms owning fossil-fuel fired electric generators or large, NOx-emitting man-

ufacturing plants would submit permits at the end of each year to cover emissions during the

previous summer. The EPA set the total level of permits such that the expected cost would be

$2000 per ton of NOx abated (based on the EPA’s predicted compliance costs).

2.2 Michigan v. EPA (March 3, 2000)

Several utilities and states challenged the EPA in court. The primary complaint was that the

EPA had not gone through the proper procedure to create the NBP, and could not force utilities

to reduce emissions without an act of Congress. The decision by the D.C. Court of Appeals on

March 3, 2000, in Michigan et al. v. EPA et al., resolved the dispute, finding mostly in favor of

the EPA.

The plaintiffs argued that the EPA had acted improperly in three ways: the original Clean

Air Act implied that the EPA could not use compliance costs to include certain states and not

others; the EPA’s modeling was not sufficiently detailed to trace emissions to sources in specific

states, and could not be used to determine which states to include; and the tradable permit

system did not allow the states sufficient freedom to reduce their emissions, violating federal

law. The court dismissed these claims, although it excluded Wisconsin from the program, and

the EPA proceeded with its plan.5

There are two distinct periods between 1990 and 2000. From 1990-1995 there was little public

discussion about NOx regulation. The second period spanned 1996-2000, in which there was

considerable uncertainty about whether and how the EPA would require a reduction in NOx

emissions. The press first publicized the OTAG meetings in late 1996 and it is unlikely that

5Several states had specific claims that they should not be included in the NBP. Thus, it was possible that
even if the court permitted the NBP, these states would not participate. For example, Wisconsin and South
Carolina argued that they should not be included; the court ruled that there was not enough evidence to include
Wisconsin, but dismissed South Carolina’s arguments. The court ruled that the EPA had not justified including
all of Georgia and Missouri, but at the time of the decision it seemed likely that at least parts of these states
would be included. I consider Georgia and Missouri as belonging to the NBP; they will join the program in 2007.
In addition, the court considered several issues regarding the calculation of the state budgets. Although most

of these remained unresolved (they were sent back to the EPA for clarification and additional rulemaking), the
decision may have affected the expected cost of the NBP, conditional on implementation. For example, the court
supported the EPA’s inclusion of certain small generating units. I address this issue below.
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investors knew that the EPA might compel utilities to reduce NOx emissions before 1996. Press

coverage increased significantly in 1997 and 1998. As I show below, there was little movement

of NBP stock prices before 1997, supporting the use of this starting date. The second period

ends on March 3, 2000, when investors knew with certainty that the NBP would occur.

2.3 Implications of the Michigan Decision

Broadly speaking, there were two possible outcomes of the litigation: firms would either be

regulated by the NBP or by the 1990 Clean Air Act Amendments.6 I decompose the change in

expected profits for an NBP firm at time t, Et(TC), into three components:

Et(TC) = Et(P ) ·G · Et(C), (1)

where Et(P ) is the expected probability at time t that the EPA would create the NBP, G is

the number of fossil-fuel generators located in the NBP region, and Et(C) is the expected net

cost per generator. The variable Et(C) includes the cost of installing abatement technology,

purchasing permits, and any other behavior caused by the program.

There are two important features of equation (1). First, the total cost increases linearly with

the number of generators, which reflects a central aspect of the NBP. Firms may comply with the

regulation in several ways: they may purchase permits, install a control technology (e.g., selective

catalytic reduction), or modify their boilers. Consider a firm that complies by purchasing permits

and assume that its generators have the same generating capacity and baseline emission rates.

The firm’s cost is proportional to the number of permits it purchases, which is the difference

between its total emissions and its allocated permits. The allocation would be proportional to

total baseline emissions and the utility would purchase the same number of permits for each

generator. Thus, the total cost of the NBP would be proportional to the number of generators.

The argument is similar for generators that install selective catalytic reduction or modify their

boilers, because there are constant returns to scale across generators.7

Second, the expected cost, Et(TC), is measured relative to the counterfactual of continuing

the 1990 Clean Air Act Amendments. These are the regulations that govern the western utilities,

6This assumption is for simplicity. In fact, there were several other possibilities. For example, the court may
have granted the EPA the authority to enforce emissions reductions, but not by means of a tradable permit
program. More generally, the expected cost of NOx regulation at time t is equal to the sum of the probability
of each mutually exclusive outcome, multiplied by the cost of the outcome. The analysis would be similar to
the text, where Et(TC) would correspond to the effect of any regulation, relative to the 1990 Clean Air Act
Amendments. As in the text, after the Michigan decision the change in stock price would reflect the cost of the
NBP, compared to the continuance of the 1990 Clean Air Act Amendments, because the probability of any other
outcome would be zero.

7In this discussion I assume that Et(P ) and Et(C) are the same across all generators. I relax these assumptions
in the empirical work and estimate the cost per generator by fuel type and size.
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making them the appropriate control group.

Before the Ozone Transport Assessment Group convened, Et(TC) was equal to zero because

both Et(P ) and Et(C) were zero. Between that point and theMichigan decision, the probability

was between zero and one, and Et(TC) was less than the conditional cost, G ·Et(C). There was

considerable uncertainty during this period and Et(P ) may have been much less than one; for

example, on May 25, 1999 the same court issued a stay, preventing the EPA from proceeding.8,9

After theMichigan decision the change in profits was equal to the conditional cost (i.e., Et(TC) =

G · Et(C)), because the probability was equal to one.

The decision also affected Et(C). Based on the text of the ruling, the direction of the effect

is ambiguous, and the courts and the EPA did not resolve the disputes that affected Et(C)

until 2001. As discussed below, the empirical strategy measures Et(C), just after the Michigan

decision.10

3 Empirical Strategy

I derive the estimating equation and discuss the identification of expected net costs of the NBP.

The empirical strategy is similar to a traditional event study, and I discuss the differences below.

3.1 Effect of the Michigan Decision on the Stock Prices of Firms

I consider a set of electric utilities located in the Midwest and Southeast. They maximize profits

and are risk neutral. Time is discrete, denoted by t. Firm i owns a number of generating plants.

8The Appeals Court did not lift the stay in the Michigan decision. The EPA interpreted this as a formality,
and in April of 2000 it sent letters to the NBP states, writing that they must submit their plans for implementing
the program.
The Court lifted the stay on June 22, 2000, in a decision by the full panel. It does not appear that this decision

addressed any new legal questions, supporting the use of March 3 as the date on which uncertainty was resolved.
Below, I show that I obtain similar results if I use June 22 instead of March 3 as the end of the event window.
Observers at the time of the June 22 decision did not expect any further appeals, so I do not consider subsequent
dates.

9Investors probably anticipated the Michigan decision. Specifically, in the 1998 proposal, the EPA found that
22 states and Washington D.C. contributed significantly to the non-attainment of counties in the same region.
The EPA used the 8-hour ozone standard to evaluate attainment, but the court ruled in May of 1999 that this
standard was not appropriate. In late 1999 the EPA published its conclusion that the same states contributed to
non-attainment using the 1-hour standard, which had already been established as a legitimate measure. Thus,
the EPA had addressed some of the legal issues before the ruling, but the court had not yet ruled that it was
satisfied.
10Because of certain legal technicalities, after the decision it was still uncertain whether states in the Midwest

or Southeast would be included in the program in 2003, as opposed to 2004. This issue was not resolved until
June of 2001, in Appalachian et al. v. EPA. Following that decision, the EPA decided that the Ozone Transport
Commission states would enter the new program in 2003, and other states would enter in 2004. Part of Georgia
and Missouri, as well as small generators and industrial boilers, will enter in 2007.
At the time of theMichigan decision it is uncertain when investors expected the NBP would begin and whether

it would include Georgia and Missouri. In the empirical work, I treat all states in the Midwest and Southeast
as being equally likely to be in the NBP in 2004. This should not create a large bias for two reasons: first, the
share of generators in Georgia and Missouri in the total number of affected generators is small; second, I use a
discount rate of 6 percent, so if investors in 2000 expected the NBP to begin in 2003 instead of 2004, the results
would overestimate the expected annual cost by 6 percent.
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At date t = 0, there are no plans for environmental regulation, and the stock price of firm i at

time 0, Pi0, is proportional to expected profits. I express the stock price of firm i at time t = 0

as:

Pi0 = πi0 + ωi0,

where πi0 is the expected discounted profits from the firm’s fossil fuel generators (coal, natural

gas and oil); and ωi0 is the expected discounted profits from non-fossil fuel generators and other

businesses owned by the firm.11 I include non-fossil fuel generators (nuclear and hydroelectric)

in the latter category because they do not emit NOx.

At date t = 1, a committee forms to investigate the benefit and cost of reducing NOx

emissions for all fossil fuel fired generators. The time t = 1 corresponds to the formation of

the Ozone Transport Assessment Group. There is considerable uncertainty as firms do not

have any information about the extent of the emission reductions or the type of regulation (i.e.,

command-and-control versus a tradable permit system).

I decompose a generator’s profits into two parts: πit = eπit−Et(TC). I define Et(TC) as the

absolute change in expected profits at time t due to NOx regulation. Thus, eπit corresponds to
the counterfactual profits, if no regulation were expected.

At time t = 2 the EPA announces that it will create a program, the NBP, which will reduce

NOx emissions and allow firms to trade permits. There is some uncertainty about the costs of

the program, and whether the EPA will be able to implement it. There are three components

of Et(TC):

Et(TC) = Et(P ) ·Gi · Et(C).

The total number of fossil-fuel generators for firm i is Gi. Et(P ) is the expected probability, at

time t, that the NBP will take effect. Et(C) is the conditional expected net cost of the program

per generator, and includes the cost of all compliance strategies. The previous section discussed

the linear relationship between expected costs and the number of generators.

The stock price of firm i at time t > 2 (i.e., after the EPA’s announcement) is given by:

Pit = eπit −Et(P ) ·Gi · Et(C) + ωit. (2)

Pit is different from Pi0 for three reasons: expected discounted fossil fuel generating profits,eπit, may have changed for causes unrelated to the NBP; the firm’s expected profits from other

operations, ωit, may have changed; and the NBP reduced expected profits.
11More precisely, πi0 is the expected discounted profits per share of stock, and similarly for ωi0.
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I define the variable ePit, as the counterfactual stock price. ePit is the value of the firm at time

t, had the EPA never announced its plans to create the NBP: ePit = eπit + ωit. The difference

between the actual and counterfactual stock price is given by:

Pit − ePit = −Et(P ) ·Gi · Et(C). (3)

This quantity is equal to the expected cost of the NBP, at date t.

At time t = τ , the obstacles preventing the implementation of the NBP are removed. At time

τ , the expected probability, Eτ(P ), is equal to one; τ corresponds to the day of the Michigan

decision, March 3, 2000. The difference between the actual and counterfactual stock prices is:

Piτ − ePiτ = −Gi · Eτ(C). (4)

The left hand side is equal to the expected cost of the NBP, at date τ .

3.2 Identification of Expected Costs

A comparison of equations (3) and (4) reveals one of the main difficulties with measuring the

effect of the program. The right hand side of equation (3) contains two unobserved variables:

the expected probability that the NBP will occur, and the conditional expected cost. I cannot

identify the net cost of the NBP when the probability is less than one. After the Michigan

decision, the expected probability is equal to one, and there is one unobserved variable on the

right hand side of equation (4).

Equation (4) is the basis for the estimating equation. The expected cost of the NBP per

generator, Eτ (C), is the coefficient in a regression of the difference between the actual and

counterfactual stock price at time τ on the number of NBP generators. As I discuss below, it is

straightforward to measure a firm’s stock price (Piτ) and generators (GN
i ). I focus on estimating

the counterfactual stock price, ePiτ .

I construct three groups of utilities, according to the locations of their generators. The

control group consists of utilities without any generators in the East or Midwest. The NBP

did not affect their stock prices after the Michigan decision. I refer to these firms with the

superscript C. The second group contains fossil fuel generators in the Midwest or Southeast,

and has the superscript N . The third group contains all other utilities, most of which were in

the Ozone Transport Commission; I denote them with the superscript O.

I assume that before investors learn of the NBP, there is a stable relationship between the

stock returns of the control group and the returns of other utilities. The stock return of firm

i on date t is: Rit = ln[(Pit + Dit)/Pit−1] − Rf
t , where Pit is the stock price, Dit is the firm’s
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dividends, and Rf
t is the risk free interest rate. Let Rit be the return of a firm in the NBP region

or the Northeast, and let RC
it be the return of a western utility. I define R

C

t as the mean return

of firms in the control group, and estimate the following equation by OLS:

Rit = αi + βiR
C

t +Xtϕi + ηit, (5)

where αi is a firm-specific intercept, βi is the correlation between the return of firm i and the

average return of firms in the control group, and ηit is an error term. The matrix Xt includes

the average return of natural gas utilities and three factors from Fama and French (1993): the

difference between the returns of portfolios of small and large stocks; the difference between the

returns of portfolios of value and growth stocks; and the excess market return. The vector ϕi is

a firm specific vector of coefficients.12 Observations are daily, and the sample spans January 2,

1990 — December 29, 1995. The endpoints are determined by data availability (see below) and

the fact that it is unlikely that investors knew about the potential for regulation in the Midwest

and Southeast before 1996. Note that this regression allows for a different relationship between

the control variables and the stock return for each firm in the NBP and Northeast.

I compute the estimated counterfactual market returns during the event window, bRit, ac-

cording to:

bRit = bαi + bβiRC

t +Xtbϕi.

The abnormal return for firm i at time t is Rit − bRit.

An important identifying assumption, as in any event study, is that the parameters αi, βi
and ϕi do not change during the event window (1996-2000). This assumption is necessary to

estimate the counterfactual stock prices. By assumption, there are no shocks, other than the

NBP, which differentially affect firms in the treatment and control groups. Below I present

several sources of evidence supporting this assumption.

I use the counterfactual return to estimate the cost of the NBP in the second stage. I

calculate the counterfactual stock price, bPit, using the actual stock price on December 29, 1995,

and iterating the following equation until March 3, 2000:

bPit = exp( bRC
it +Rf) bPit−1 −Dit. (6)

12Among the independent variables the mean stock return of the control group, R
C

t , explains the largest share
of the variance of the dependent variable. Omitting the other variables does not affect the results.
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I define the prediction error, εi, as the difference between the counterfactual stock price andbPiτ . By defining the parameter δ = Eτ (C), I can rewrite equation (4) as:

Piτ − bPiτ = −δGN
i − εi. (7)

The change in the stock price of firm i, Piτ − bPiτ , depends linearly on the number of generators

in the NBP region, GN
i . The parameter δ is the expected net cost of the NBP per generator at

time τ .

The analysis includes several simplifications, which I now relax. First, I have assumed that

the expected net costs are the same for different types of generators. I partition firm i’s generators

into two groups, indexed by the letter j: coal, and natural gas/oil. I estimate δj for both types

of generators. Below I also consider specifications that separate generators by size and fuel type.

Second, I account for the effect on stock prices of the Ozone Transport Commission, the

NOx tradable permit program in the Northeast. Changes in the expected costs of this program

between 1990-2000 would affect stock prices, as would differences between the expected cost of

the NBP and Ozone Transport Commission. Consequently I control for the number of Ozone

Transport Commission generators in the estimating equation.13

It is possible that utilities changed the types of generators they own in response to the

NBP. In particular, since coal generators have substantially higher NOx emissions rates, utilities

may have sold or retired coal generators, and constructed natural gas/oil generators. I find some

evidence that this occurred, and consequently, the independent variables are counts of generators

in 1995, which could not have been affected by the NBP. The parameter δj corresponds to the

cost of the NBP per generator owned in 1995.

The final consideration is that it may have taken time for investors to understand the im-

plications of the Michigan decision. I compare the actual and counterfactual prices seven days

after the decision, on March 10, 2000. The results are insensitive to different length windows.

To measure costs as positive numbers, I multiply equation (7) by negative one. The estimat-

ing equation is:

bPiτ+7 − Piτ+7 =
X
j

δjG
N
ij +

X
j

ιjG
O
ij + εi, (8)

where ιj is the coefficient on the number of generators belonging to firm i in the Northeast for

generators of type j. The parameters of interest are δC and δNO, which are the cost per generator

13Because northeastern utilities already participated in a tradable permit program and the NBP may have
affected their stock prices, I do not include them in the control group. However, if I estimate the cost of the NBP
using both western and northeastern utilities in the control group I obtain similar, though smaller cost estimates.
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of the NBP, for coal and natural gas/oil generators. I use the estimate of δj and the total number

of generators in the NBP to calculate the total effect of the NBP on expected profits.

This empirical strategy is similar to a CAPM-based event study, which would use equation

(5) to estimate abnormal returns during the event period. As in a CAPM approach, I estimate

the relationship between the stock prices of NBP firms and a control group during the initial

period. I assume that there are no differential shocks to NBP firms between January 2, 1996 and

March 3, 2000. The difference is that the CAPM calculates the cost of the NBP from abnormal

returns. My approach uses the difference between the actual and counterfactual stock prices.

The shortcoming of the CAPM is that it cannot simultaneously allow for a linear relationship

between the number of generators and profits, and allow for the estimation of costs by generator

type. It is possible to use the CAPM to estimate abnormal returns separately for each firm,

then compute the average effect across firms. However, this specification would not allow me to

determine the effect of the NBP on individual generator types. Alternatively, I could estimate

equation (5) over the entire period from 1990-2000, and include a dummy variable equal to one

during 1996-2000, which would measure the average abnormal return over the second period.

By interacting this variable with the share of coal generators, I could estimate the abnormal

returns for these generators. However, because the dependent variable is the rate of return, this

specification would not allow for a linear relationship between the number of generators and

profits. I report the results of both types of CAPM specifications below, and obtain similar

results to the baseline cost estimate.

4 Data

To estimate equations (5) and (8) I match generator data from the DOE with stock price data

from CRSP. Every year the DOE collects information on all electric generating plants in Form

860. This data is available on the DOE website beginning in 1990; I use date from 1990-2001.14

For each investor-owned-utility and year, I calculate the number of generators by state and

generator type. I distinguish two types of fossil fuel generators, according to the primary fuel:

coal and natural gas/oil. Coal generators have much higher NOx emission rates and are larger,

over 280 megawatts (MW) on average; natural gas and oil generators are about 40MW.

I match the DOE utilities to stock prices in CRSP by company name. I use additional

information, such as subsidiary names, in cases where the DOE and CRSP names do not match

exactly. Utilities in the final data set satisfy several criteria: they are publicly traded, their

stocks trade continuously from 1990-2000, and they are not located in Alaska or Hawaii.
14I use the 2001 data to compile the names of investor owned utilities. I cannot distinguish investor-owned-

utilities from other utility types (e.g., municipal) prior to 2001.

12



The sample includes 70 firms. There was a wave of mergers and acquisitions in the late

1990s, coinciding with the partial restructuring of the electric power industry. The sample does

not include utilities whose stocks discontinued trading as a result of a merger or acquisition.15

The sample contains most large utilities in the NBP region. The utilities in the balanced panel

own 80 percent of the fossil fuel capacity of publicly traded utilities in the NBP, and about 60

percent of the total fossil fuel capacity in the NBP.

Tables 1-3 provide summary information. Table 1 lists the names of the 70 utilities in the

sample. The first column contains the control group: utilities that own generators in the West,

but not in the Midwest or East during the entire period from 1990-2000. The second column

lists the names of utilities with fossil fuel generators in the NBP region, and the third column

contains the remaining utilities.

Table 2 provides summary statistics for the firms listed in Table 1. For the three categories of

utilities, Panel A shows the mean market capitalization on December 29, 1995, total generating

capacity, in MW, and fossil fuel generating capacity, with standard deviations in parentheses.

NBP utilities have larger market capitalizations and total generating capacities. Equation (5)

can account for these differences because it incorporates the possibility that firms have different

expected returns and factor loadings.

Panel B shows the share in total generating capacity for coal and natural gas/oil generators

in 1995. The total fossil fuel share is similar for western and NBP utilities, about 0.85, although

NBP utilities have a larger share of coal. Eastern utilities have a similar fraction of total fossil

fuel capacity, but are weighted more towards natural gas/oil.

Panel C shows the corresponding shares in 2000. Relative to 1995, western utilities have

similar portfolios of generators, though there was a slight transition away from coal. NBP

utilities show a larger decrease in coal generators and a corresponding increase in natural gas/oil.

Northeastern utilities also move away from coal. This pattern suggests that utilities may have

adjusted the composition of their generators in response to environmental regulation or for other

reasons. I use data from 1995 to construct the independent variables; the NBP could not have

affected generators owned in 1995.

Table 3 compares the generators of the NBP firms in the balanced panel with other generators

in the NBP region (i.e., generators owned by other utilities or non-utilities). The generators of

NBP firms are quite similar in size. This agreement, combined with the fact that the sample

includes about 60 percent of the fossil fuel generating capacity in the NBP, implies that firms in

15The sample includes some utilities that purchased other utilities, such as American Electric Power, which
acquired Central and South West in 2000. Below I show that the results are unaffected by dropping firms involved
in mergers.
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the sample would experience a similar change in profits to other firms, and that the estimation

results should be representative of the entire population of electricity generators.

5 Results

5.1 Estimated Counterfactual Stock Prices

I first discuss the results of estimating the counterfactual stock prices. Figure 1 shows the actual

and counterfactual stock prices of NBP utilities from 1990-2000. I estimate equation (5) and use

equation (6) to calculate the actual and counterfactual stock prices for each firm. I compute the

mean for each day, normalizing prices to one on the last day of the estimation sample, December

29, 1995 (denoted by the first vertical line). The figure shows the 95 percent confidence intervals,

computed using the standard error formula in Salinger, 1992 (which accounts for correlation over

time and across firms). The second vertical line indicates the date of the Michigan decision,

March 3, 2000.

During the estimation period and until late 1996 the actual and counterfactual prices follow

one another quite closely; the discrepancies are less than a few percent. After 1996, as investors

learned about the Ozone Transport Assessment Group, the actual stock price falls below the

counterfactual. The actual price continues to decline until late 1998, when the EPA published

its proposal to establish the NBP. Between 1998 and 2000, the difference between the two series

increases considerably, as the NBP became more likely. The difference stabilizes after the court

decision.

Figure 2 provides support for the identification strategy. This figure is constructed using the

same control group as in Figure 1, but it plots the average actual and counterfactual stock prices

of utilities in the third category. Recall that most of these utilities were in the Ozone Transport

Commission and were affected much less by the NBP. The actual and counterfactual prices are

nearly identical in 2000.16 I can reject at the 5 percent level the hypothesis that the difference

between the actual and counterfactual prices for these utilities is as large as the difference for

the NBP utilities.

5.2 Estimated Annual Costs

I now discuss the estimates of equation (8), shown in Table 4. In each regression, there are

48 observations, one for each utility in the NBP and the Northeast. The dependent variable

is the difference between the counterfactual and actual stock prices on March 10, 2000. The

16Note that the estimates are less precise, and the two series differ somewhat more than in Figure 1 during the
estimation period.
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counterfactual is calculated using equations (5) and (6), and is the estimated stock price, had

the NBP not been created. In column 1 the independent variables are the total number of fossil

fuel generators in the NBP and Ozone Transport Commission regions. The coefficient on the

number of NBP generators is 0.11, with standard error 0.03, which is significant at the 1 percent

level.17 Assuming a discount rate of 6 percent (following the analysis of the EPA, 1998), the

NBP would cost about $1.3 million per year for the average generator in the sample.

Table 5 reports the estimated annual cost of the NBP from the results in Table 4. I first

calculate the net cost to utilities in the sample using the total number of NBP fossil fuel gener-

ators and the number of shares of stock of the firms. I scale the sample estimate by the ratio

of the total fossil fuel generating capacity in the NBP (obtained from EPA, 1998) to the fossil

fuel capacity in the sample.18 The specification in column 1 of Table 4 implies an annual cost

of about $1.95 billion (2000 dollars), with a standard error of $610 million. In comparison, the

EPA and Palmer et al. estimate compliance costs of about $2.2 billion. The results in Table

5 imply either that investors expected similar costs but did not expect utilities to be able to

pass on the costs to consumers, or that investors expected larger compliance costs. The former

interpretation agrees with Palmer et al., who predict that the NBP would have a small effect on

electricity prices, and that utilities would bear most of the costs.

In column 2 I investigate whether the expected costs of the NBP varied across the two types

of generators. Since coal generators generally have much higher NOx emission rates than natural

gas and oil generators, they would be more likely to purchase permits or install capital equipment

to reduce emissions. Many natural gas and oil generators would have baseline emissions similar

to their allotted permits, and would not be affected by the NBP. I re-estimate equation (8), where

the independent variables are the number of generators of each firm, by region and generator type

(coal and natural gas/oil). There are considerable differences across the generator types. The

estimated change in stock price per coal generator is 0.25 with standard error 0.06, significant

at the one percent level. The annual change in profits for a coal generator is $3 million, which

is similar to the EPA’s estimate of compliance costs.

The point estimate on natural gas and oil generators is close to zero and insignificant. I can

reject at the one percent level that the estimate is as large as the coal estimate. This result

seems plausible, given the differences in emission rates noted above.

I use the estimates in column 2 to predict the annual cost of the program, similarly to column

1. I obtain an estimated cost of $2.02 billion per year, with standard error $590 million, reported
17For clarity of presentation I do not report the other estimated coefficients. In most cases, these estimates are

small and insignificant, in agreement with the results shown in Figure 2.
18I scale by capacity instead of by the number of generators because I do not have data on the expected number

of generators in the NBP.
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in column 2 of Table 5. This is close to the estimate in column 1.

As noted above, the estimates in column 2 correspond to the change in expected profits for

generators operating in 1995. If firms retired coal generators in the late 1990s, the effect of

the NBP on coal generators operating in 2000 might be smaller. In column 3 I use the 2000

generator counts as independent variables. The results are similar to the baseline and suggest

that the NBP would cost an operating coal generator about $3 million per year. This similarity

suggests that the changes in generator shares reported in Table 2 were not correlated with the

independent variables.19

Columns 4-6 of Table 4 report several other specifications. The corresponding total cost

estimates are reported in columns 4-6 of Table 5. Oil and natural gas generators differ somewhat

in size and baseline emission rates (natural gas generators are larger and emit less NOx). In

column 4 I separate these categories. The results provide some evidence that expected profits

for natural gas generators increased, presumably because their utilization rates would increase

or they would yield excess permits. However, the estimate is insignificant, and I cannot reject

the hypothesis that the natural gas and oil estimates are jointly equal to zero.

In columns 5 and 6 I consider whether investors expected the NBP to affect large generators

differently from small generators. Most of the costs of installing selective catalytic reduction (the

main control technology) are fixed, and many observers expected that only large coal generators

would find it profitable to install the technology. The emissions from these generators would

decline by as much as 90 percent, allowing their owners to sell excess permits and recover much

of the costs of selective catalytic reduction. Smaller generators would purchase permits and

would have a larger decline in profits, per unit of generating capacity. Because the independent

variables are counts of generators, if large and small generators had similar emission rates and

respond similarly to the regulation, the coefficient on large generators would be significantly

greater. On the other hand, if the coefficient on small generators is similar in magnitude or

larger, this would imply that investors expected small generators to be more adversely affected,

after normalizing by output.

In column 5 I separate coal generators into two groups, depending on whether they have a

capacity above 280MW (the average capacity for the sample, shown in Table 3). As column 5

shows, the coefficient on large generators is slightly smaller. This result is consistent with the

EPA’s prediction that large generators would install selective catalytic reduction.20

19The results are similar to those reported in column 3 if I instrument the 2000 generator counts with the 1995
counts of generators.
20Expected costs may also vary for coal generators depending on whether they already have a control technology

installed before 1995. I use data from the DOE’s Form 767 to identify such generators, where the most common
technology is a low-NOx burner. However, there is not enough variation across firms to identify a different effect
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Large natural gas generators have lower baseline emission rates and higher output, and the

EPA would allocate more permits to them. In column 6 I separate natural gas/oil generators ac-

cording to whether their capacity is above 40MW. The estimates suggest that investors expected

large natural gas/oil generators to benefit slightly more from the NBP, though the estimate is

insignificant.

As Table 5 shows, the annual cost estimates from these specifications are quite similar to the

baseline. I conclude from Tables 4 and 5 that the effect of the NBP on electricity generators

is consistent with the EPA’s expectations about which utilities would be most affected by the

program. Coal generators, particularly small generators, would be more adversely affected. The

estimates broadly agree with the EPA’s and Palmer et al.’s predictions of compliance behavior,

namely, that large coal generators would be more likely to install selective catalytic reduction,

and that their profits would fall by less, per unit of output.

5.3 CAPM Estimate of NBP Cost

For comparison, I use a CAPM to estimate the cost of the NBP. I modify equation (5) to obtain

the following equation:

RN
it = αi + βiR

C

t +Xtϕi + φiNt + νit, (9)

where variables and parameters are defined as in equation (5), except that t spans January 2,

1990 to March 10, 2000. The variable Nt is an indicator, equal to one if t ∈ [1/2/96, 3/10/00];
the parameter of interest is φi, which measures the average abnormal return for each firm.

Equation (9) is a standard CAPM, which allows for firm-specific coefficients on the indepen-

dent variables, and estimates a separate cumulative abnormal return for each firm.21 I use the

estimates of φi to compute the total cost of the NBP.

I estimate a similar specification, in which the effect of the NBP is proportional to the number

of fossil fuel generators in the program. I define the variable Fi as firm i’s share of NBP fossil

fuel generators in total generators. I modify equation (9) to obtain:

RN
it = αi + βiR

C

t +Xtϕi + λFt + νit, (10)

where λ is the coefficient on fossil fuel generating share. Multiplying λ by the average fossil

fuel share yields the average abnormal return over the event window. Similarly to the baseline

for generators with low-NOx burners and those without.
21It is possible to estimate an equation similar to equation (9), but imposing the restriction that φi is equal

across firms. This specification is not numerically equivalent to the one reported in the text, but the resulting
cost estimate is nearly identical.
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specification, the effect of the NBP on stock prices is increasing in the number of fossil fuel

generators. However, equation (10) does not allow for a linear relationship between the number

of generators and the stock price, because the dependent variable is the stock return.

I report the results of estimating equations (9) and (10) in columns 7 and 8 of Table 5. I

estimate these equations by a Seemingly Unrelated Regression estimator. The standard errors

account for correlation across firms and over time (see Salinger, 1992). These regressions yield

estimated average abnormal returns, which I convert to cumulative abnormal returns (CARs)

using the number of days in the estimation window. I then use the CARs to calculate the

change in market capitalization for firms in the sample, and scale this estimate by the ratio of

generating capacity in the NBP to the fossil fuel generating capacity in the sample. The annual

cost estimate using equation (9) is $2.82 billion, and is $1.67 billion for equation (10). The latter

estimate is significant at the 10 percent level, and is similar to the baseline estimate of $2 billion

in column 2. As noted above, I prefer the baseline specification because it allows the number of

generators to affect the stock price linearly, and estimates the effect of the NBP by generator

type.22

5.4 Robustness

5.4.1 Potential Omitted Variables

The main potential source of bias is an omitted variable correlated with the independent vari-

ables. I investigate a number of possibilities below, such as the sulfur dioxide regulation, and

find that they do not affect the results.

The first two columns in Table 6 focus on demand and productivity shocks. I merge Com-

pustat data with the CRSP/DOE data set to obtain each firm’s net earnings in 1995 and 2000.

I include the change in this variable from 1995 to 2000, to control for persistent unobserved

productivity shocks during this time period. The main estimates in column 1 of Table 6 are

similar to the baseline, suggesting that such shocks are not affecting the results. The estimated

coefficient on net earnings is insignificant.

A negative demand shock to the NBP region in the late 1990s would cause a decline in

revenue, as well as a decline in stock prices. In column 2 I use Compustat data to control for the

change in revenue between 1995 and 2000. The main estimates are unaffected and the estimate

22As discussed in the introduction, it is also possible to estimate the cost of the program with an isotonic
regression (see Ellison and Mullin, 2001). The main assumption in this approach is that the expected cost of the
program is monotonically increasing between 1996 and 2000. I obtain a similar estimate, of about $2.3 billion
per year.
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on revenue is negative and insignificant (not reported).23 ,24

The Acid Rain Programmay have affected the values of generators in the NBP region, biasing

the results. This program was created by the 1990 Clean Air Act Amendments, and consisted of

two phases: Phase I spanned 1995-2000, and Phase II began in 2000. Phase I included 262 large

boilers (mainly coal fired) with especially high sulfur dioxide emission rates. Phase II included a

wider range of generators. Many of the generators in both phases are located in the NBP region.

As discussed in the introduction, Kahn and Knittel find that stock prices did not respond to

the creation of the program in 1990, arguing that state regulators would allow utilities to recover

compliance costs. However, as electricity restructuring began in the mid 1990s, stock prices may

have fallen if investors did not expect utilities to be able to recover future costs of the Acid Rain

Program. In that case, the baseline estimates of the NBP would include the effect of the Acid

Rain Program and would be biased away from zero.

In column 3 I separate Phase I coal generators from other coal generators, using the DOE’s

Clean Air Act Database. If profit shocks to Phase I generators were driving the results, the

coefficient on non-Phase I generators would be smaller than the baseline estimate, and the

coefficient on Phase I generators would be larger. This is not the case; the estimate on non-

Phase I generators is 0.34, with standard error 0.19. The coefficient on Phase I generators is

0.15, and is insignificant. Thus, I find little evidence that shocks to Phase I generators affected

profits.

More generally, restructuring may have reduced expected profits if utilities did not expect to

be able to recover the costs of previously made capital investments. In column 4 I separate coal

generators according to whether they have a scrubber. This specification differs from column 3

because some firms installed scrubbers to comply with Phase I, and others installed them because

of different regulations. Furthermore, many generators in Phase I did not install scrubbers.

Utilities’ stock prices would decrease during restructuring if they could not recover installation

costs, which could be several hundred million dollars. This would have a similar effect as Phase

I status; the estimate on coal generators without scrubbers would be smaller than the baseline

estimate and the coefficient on coal generators with scrubbers would be larger. The estimate on

the non scrubber category is precisely estimated and nearly identical to the baseline, suggesting

that this is not a major concern. These results agree with the hypothesis that utilities expected
23Other possible measures of productivity or profits, available from Compustat, yield similar results.
24A negative demand shock to the NBP region would affect all generators, including non fossil fuel generators.

I can test for such a shock by including counts of non fossil fuel generators as independent variables in the baseline
regression. If a decline in demand had a large effect on profits, the coefficient on non fossil fuel generators would
be positive and significant, and the coefficient on coal generators would be smaller and possibly insignificant. In
practice, the coefficient on coal generators is similar to the baseline and precisely estimated, and the coefficient
on non fossil fuel generators is small and insignificant. However, there is not enough variation in non fossil fuel
generators to reject a large change in profits.
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to recover the costs of the Acid Rain Program and other sunk investments during restructuring.

Litigation unrelated to the NBP may have affected stock prices. During the late 1990s,

the EPA sued several utilities for not complying with the New Source Review provisions of the

Clean Air Act. New Source Review requires that a utility substantially reduce emissions when

it modifies an existing power plant. The EPA claimed that some utilities had performed modi-

fications without installing the appropriate technology; the utilities argued that these activities

were routine maintenance, and were not covered by New Source Review. Although many of these

lawsuits were not resolved before March 3, 2000, stock prices may have fallen in anticipation of

expected costs, creating an upward bias.

In column 5 I omit the 5 NBP firms sued by the EPA: American Electric Power, Cinergy,

Dominion Resources, Ohio Edison and Southern. The estimate on coal generators would be

smaller than the baseline if New Source Review litigation were driving the results; in fact it is

larger. The most likely interpretation of this result is not that the litigation had no effect on

stock prices, but that the NBP superseded the litigation. That is, the NBP meant that these

firms would either have to install the same equipment as required by New Source Review, or that

they would incur other costs (e.g., from purchasing permits), which would have similar effects.

Mergers of NBP firms between 1996-2000 may bias the estimates. There are several possible

concerns related to mergers, which would imply that the sample is not representative of all firms

affected by the NBP. First the sample does not include some merger participants because their

stocks discontinued trading. If the compliance costs for these firms were different from firms in

the sample, the results would be biased. Second, if a firm is involved in a merger and its stock

continues trading, the merger may affect the stock price for reasons related to the NBP (e.g., the

compliance costs are lower for the acquired firm) or for other reasons. Using information from

the DOE (2000), in column 6 I omit firms involved in mergers between 1995-2000, or involved in

proposed mergers, as of April, 2000. The results are nearly identical to the baseline, suggesting

that the sample of utilities is representative.

Investors may have viewed the Michigan decision as a precedent under which the EPA could

impose other regulations on the utility industry. The estimates in Table 4 would include the

effects of potential regulations, creating bias. For example, several states were initially included

in the Ozone Transport Assessment Group, but were not included in the NBP. Investors may

have expected that theMichigan decision would enable the EPA to expand regulation to include

these states (essentially, this will occur when the Clean Air Interstate Rule begins in 2009).

The decision would have had a negative effect on the stock prices of utilities to the west of the

NBP, biasing the NBP estimates towards zero. Restricting the control group to the 10 utilities
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located in the original Ozone Transport Assessment Group states but not in the NBP would

lead to smaller estimates. In column 7, the estimates on generator counts are quite similar

to the baseline, as is the corresponding total cost estimate, $1.79 billion (standard error, $529

million). In column 8 the control group includes utilities located entirely in states that were not

part of the Ozone Transport Assessment Group. The estimates confirm the results in column 7.

It appears that the baseline estimates do not include the effect of expanding NOx regulations

further West.

Finally, it is possible that restructuring lowered utilities’ expected profits. If that were

the case, the stock prices of western utilities located in deregulated states would also decline.

Restricting the control group to these utilities would lead to smaller abnormal returns for the

NBP utilities. In column 9 the estimates are quite similar to column 2 of Table 4, suggesting that

the results are not driven by restructuring per se, but rather by the combination of restructuring

and the NBP (recall that in the absence of restructuring, the NBP would not have affected

expected profits).

5.4.2 Additional Results

Table 7 reports the results of several additional specifications. The cost estimates are generally

robust to alternative estimation models.

It may have taken more than one week for investors to fully understand the implications of

the Michigan decision. In that case, a seven day window would not be sufficient. I use a one

month window in column 1; the dependent variable is the difference between the counterfactual

and the actual stock price on April 3, 2000. The estimates are similar to the baseline.

Although the Michigan decision affirmed the EPA’s ability to begin the NBP, the court did

not lift the stay it had granted on May 25, 1999. As noted above, the EPA considered this issue

a formality, but the court did not lift the stay until June 22, 2000.25 One might interpret June

22 as the date on which the expected probability of the NBP, Et(P ), was equal to one, rather

than March 3. In column 2 the dependent variable is the difference between the counterfactual

and the actual price on June 29. The estimates are close to the previous results.

An important identifying assumption is that the parameters estimated in equation (5) are

constant from 1996-2000. Otherwise, adding observations to the estimation window after March

10, 2000 would likely affect the estimated costs. In column 3 I include stock returns from March

11, 2000 - December 31, 2000 in estimating equation (5). The results are similar, which suggests

25It is unclear why the court did not lift the stay on March 3. In the baseline model I assume that it was
obvious to observers that after the Michigan decision the NBP would go forward as planned, and that the stay
was a relatively trivial obstacle. Contemporary articles in the trade press support this assumption.
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that the parameters in equation (5) did not change. Note that these results further supports the

assumption that there were no differential profit shocks during the event period, which was the

focus of Table 6.

Another possibility is that the parameters in equation (5) varied during the estimation period.

In that case, changing the endpoints of the estimation window would affect the results. In column

4 the sample used to estimate equation (5) includes observations from January 2, 1990 - May

31, 1995 (which predates the first meeting of the Ozone Transport Assessment Group), and in

column 5 the sample includes January 2, 1991 - December 29, 1995. The estimates are similar

in both specifications, but I prefer the baseline regression because the results are more robust

to other specifications.

It is possible that counts of Ozone Transport Commission generators do not adequately

control for shocks to northeastern utilities. The specification in column 6 omits firms in the

third column of Table 1. The estimates are similar to the baseline: the coal estimate is smaller,

though significant at the one percent level and the natural gas/oil estimate is negative and

insignificant.

Given the small number of observations in these regressions, I consider whether the results

are sensitive to outliers. In column 7 I drop the 4 firms with extreme values of the dependent

variable, which does not affect the estimates. Omitting the four firms with the largest and

smallest counts of coal generators (column 8) leads to a larger estimate for coal, though the

corresponding total cost estimate is quite similar to the baseline (not reported). In column 9 I

report a median regression, where the results are again close to the baseline. Thus, the results

are fairly insensitive to outliers.26

In the baseline specification I assume that all generators of a given fuel type have the same

change in expected profits. Alternatively I could assume that the change in expected profits

increases linearly with generating capacity. In column 10 the independent variables are the

generating capacity, in gigawatts (GW), by region and fuel type, in place of generator counts.

The estimates in column 10 imply similar expected changes in profits. Coal generators have a

precisely estimated cost per GW of capacity, which corresponds to an annual cost per generator

of $2.1 million, similar to the baseline figure. The estimate on natural gas/oil generators is

insignificant. Note that since these generators are much smaller than coal, the implied cost

estimate per generator ($290,000) is also much smaller. The total cost estimate of the NBP is

close to column 2 of Table 5, $1.7 billion, with standard error $511 million. I prefer the baseline

specification because the results are less sensitive to outliers, i.e., firms with extremely large coal

26The results are also insensitive to dropping one firm at a time from the baseline regression.

22



generators.

6 Conclusions

This paper presents a simple method for predicting the cost of environmental regulation, before

the regulation takes effect. I use changes in stock prices to calculate the expected net cost of the

NBP. I exploit variation across firms in the location and type of generators they own to construct

counterfactual stock prices and to estimate the expected cost of the program by generator type.

I estimate an annual cost of about $2 billion, which is similar to previous estimates that use

a bottom-up method to simulate the response of the entire industry to the NBP. I conclude

that firms had similar expectations as the EPA and other economists about the effects of the

program.

More broadly, the relative simplicity of implementing event studies should make them useful

for analyzing other proposed policies, such as greenhouse gas regulation, where employing the

bottom-up approach may be more difficult. Event studies have not been widely used for envi-

ronmental regulation because of a concern that unobserved profit shocks might bias the results,

given the long time between a regulation’s proposal and its adoption. I have investigated a num-

ber of potential demand and supply shocks, and this does not appear to be a serious concern

with the NBP. In other contexts the event window may be significantly shorter if it is possible

to estimate the total cost of the program before it is adopted.
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Figure 1
 NBP Stock Prices: Actual vs. Counterfactual, 1990-2000
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Notes: Counterfactual price is the mean predicted stock price of firms with fossil fuel generators in the 
NBP region. Counterfactual prices were calculated using the predicted returns from equation (6), with 
prices normalized to one on December 29, 1995 (see text). Actual price is the average daily stock price of 
the same firms, normalized to one on the same date. The first vertical line indicates the end of the 
estimation period, December 29, 1995. The second vertical line denotes the date of the Michigan 
decision, March 3, 2000. The dashed lines are the 95 percent confidence intervals around the estimated 
predicted price from 1996-2000.



Figure 2
Ozone Transport Commission Stock Prices: Actual vs. 

Counterfactual, 1990-2000
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Notes: Actual prices, counterfactual prices and standard errors are computed as in Figure 1. The 
sample includes all utilities in column 3 of Table 1 (see text).



Western Utilities NBP Utilities Eastern Utilities not in NBP

1 Black Hills Allegheny Energy Baltimore Gas and Electric

2 Central Louisiana Electric American Electric Power Bangor Hydro Electric

3 Idaho Power C M S Energy Central Hudson Energy

4 Montana-Dakota Utilities Carolina Power and Light Central Vermont Public Service

5 Madison Gas and Electric Cinergy Citizens Utilities

6 Minnesota Power and Light Dayton Power and Light Consolidated Edison

7 Montana Power Duquesne Light Entergy

8 Nevada Power Delmarva Power and Light FPL

9 Northwestern Public Service Detroit Edison G P U

10 Oklahoma Gas and Electric Dominion Resources Green Mountain Power

11 Otter Tail Power Duke Power Houston Industries

12 Pacific Gas and Electric Empire District Long Island Lighting

13 Pinnacle West Indianapolis Power and Light Maine Public Service 

14 Public Service Company of NM Kansas City Power and Light New York State Electric and Gas

15 Puget Sound Power and Light NIPSCO Niagara Mohawk

16 SCE Ohio Edison Northeast Utilities

17 TECO Potomac Electric Power Northern States Power CO MN

18 Texas Utilities SCANA PECO

19 Tucson Electric Power Southern Pennsylvania Power and Light

20 W P L St Joseph Light and Power Public Service Enterprise Group

21 Washington Water Power Union Electric Rochester Gas and Electric

22 Western Resources Utilicorp UGI

23 Wisconsin Energy United Illuminated

24 Unitil

25 WPS

Table 1

Investor Owned Utilities in Balanced Panel

Notes: The table lists the names of all publicly traded investor owned electric utilities, whose stock prices appear 
in the CRSP database from January 1, 1990 - December 31, 2000 (see text). Each utility was matched to the 
Department of Energy Form 860, to obtain the locations and types of its generators. Western Utilities include all 
firms whose generators are located west of the NBP region, and which do not own generators in the NBP region 
or the Northeast. NBP Utilities include firms with fossil fuel generators in the NBP region in 1995. Eastern Utilities 
Not in NBP include all other utilities.



Western Utilities NBP Utilities Eastern Utilities not in NBP

Number of Firms 22 23 25

2,234 3,771 2,834
(3,172) (2,704) (2,769)

4,256 8,800 5,539
(5,684) (9,003) (5,781)

3,359 7,109 4,097
(4,594) (7,558) (4,705)

0.54 0.64 0.26
(0.26) (0.16) (0.29)

0.30 0.21 0.47
(0.23) (0.16) (0.31)

0.48 0.56 0.15
(0.26) (0.22) (0.20)

0.32 0.30 0.39
(0.21) (0.18) (0.29)

Coal Generating 
Capacity

Natural Gas/Oil 
Generating Capacity

Natural Gas/Oil 
Generating Capacity

Table 2

Firm Summary Statistics

Panel A: Market Capitalization and Generating Capacity in 1995

Notes: Each cell reports the mean across firms in the corresponding sample, with the standard deviation in 
parentheses. Data is from CRSP, Compustat and DOE Form 860 (see text for details). Firms are assigned 
categories as in Table 1. Market capitalization is the stock price on December 29, 1995, multiplied by the 
number of shares of stock. Generating capacity is the total capacity, in MW, in 1995. Fossil fuel generating 
capacity is the total generating capacity, in MW, of coal, natural gas and oil generators in 1995. Share of 
generating capacity is the ratio of the capacity of the indicated generator type to the total generating capacity in 
the corresponding year.

Market Capitalization

Fossil Fuel Generating 
Capacity (MW)

Coal Generating 
Capacity

Generating Capacity 
(MW)

Panel B: Share of Generating Capacity in Total in 1995

Panel C: Share of Generating Capacity in Total in 2000



Generators Owned by Utilities in Sample All Generators in NBP

111.15 92.42
(202.61) (188.89)
{24.15} {19.00}

278.61 240.30
(243.55) (234.20)
{185.28} {165.00}

40.31 24.28
(74.81) (59.50)
{20.00} {5.10}

Natural Gas/Oil 
Generators

Notes: Each cell contains the mean capacity of the indicated generators, in MW, from the 1995 Form 860. 
Standard deviations are in parentheses and medians are in brackets. Generators Owned by Utilities in Sample 
include all generators owned by the firms in column 2 of Table 1. All Generators in NBP include all generators 
in Form 860 in the NBP region. 

Table 3

Capacity of Generators in NBP Region

All Generators

Coal Generators



All Generators
Number of 

Generators by 
Fuel Type

2000 Generator 
Counts

Include Oil and 
Natural Gas 
Generators 
Separately

Include Large 
and Small Coal 

Generators 
Separately

Include Large 
and Small 

Natural Gas 
Generators 
Separately

(1) (2) (3) (4) (5) (6)
0.11

(0.03)
0.25 0.27 0.26 0.23 0.26

(0.06) (0.06) (0.06) (0.34) (0.06)
0.00 -0.02 0.00 -0.04

(0.05) (0.04) (0.05) (0.15)
-0.13
(0.15)
0.02

(0.07)
0.25

(0.20)
0.00

(0.06)
Number of 
Observations 48 48 48 48 48 48

R2 0.23 0.27 0.35 0.29 0.27 0.27

Dependent Variable: Difference Between Counterfactual And Actual Stock Prices

Table 4

Effect of the NBP on Expected Generator Profits

Notes: Huber-White standard errors in parentheses. The sample includes utilities in the second and third 
columns of Table 1. To construct the dependent variable, equation (5) is estimated by Ordinary Least Squares 
(OLS), using observations from January 1, 1990 to December 29, 1995. The dependent variable in equation (5) 
is the daily return for each firm with at least one generator in the Midwest or East. The independent variables are 
the average return for firms located entirely in the West, the three Fama-French factors and the average stock 
return of natural gas utilities. Counterfactual stock price is calculated using the estimated coefficients from 
equation (5) (see text). Table 4 shows the results of estimating equation (8). The dependent variable in all 

All

Coal

Natural 
Gas/Oil

Natural Gas

Small Coal

Oil

Small Natural 
Gas/Oil

regressions is the difference between the counterfactual and actual price on March 10, 2000. All regressions are 
estimated by Ordinary Least Squares (OLS). The independent variables in columns 1,2 and 4-6 are counts of 
generators in 1995, by region (the NBP region and the Northeast); column 3 uses counts of generators in 2000. 
Table 4 reports only the coefficients on the NBP variables. The independent variables are the total number of 
fossil fuel-fired generators, by region in column 1. Columns 2 and 3 include the number of coal and natural 
gas/oil generators by region. Column 4 separates natural gas and oil. Coal generators in column 5 includes coal 
generators with a capacity of at least 280MW and small coal generators include all other coal generators; 
similarly for column 6, where small natural gas/oil generators have capacities less than 40MW.



All Generators
Number of 

Generators by 
Fuel Type

2000 Generator 
Counts

Include Oil and 
Natural Gas 
Generators 
Separately

Include Large 
and Small Coal 

Generators 
Separately

Include Large 
and Small 

Natural Gas 
Generators 
Separately

CAPM using 
Equation (9)

CAPM using 
Equation (10)

(1) (2) (3) (4) (5) (6) (7) (8)

1.95 2.02 1.97 1.94 2.06 2.08 2.82 1.67
(0.61) (0.59) (0.46) (0.54) (0.61) (0.58) (1.32) (1.03)

Table 5

Annual Net Cost of the NBP (Billion 2000 Dollars)

Annual Net 
Cost

Notes: Huber-White Standard errors in parentheses. Columns 1-6 report the estimated total annual net cost for NBP generators, using the corresponding 
estimates from columns 1-6 in Table 4. The total cost for firms in the sample is obtained by multiplying the number of generators in the sample by the 
corresponding estimate in Table 4, and by the total number of shares of stock. The total cost for NBP generators is the product of the sample cost and 
the ratio of total NBP fossil fuel generating capacity to the fossil fuel capacity in the sample. The annual cost estimate applies a six percent discount rate 
to the total cost estimate and assumes that the NBP would begin in 2004. Columns 7 and 8 report the annual cost calculated from the estimated 
abnormal returns in equations (9) and (10) (see text).



Control for 
change in 

profits

Control for 
change in 
revenues

Include Phase I 
Coal 

Separately

Include Coal 
with Scrubbers 

Separately

Drop New 
Source Review 

Firms

Drop Firms 
Involved in 

Mergers

Control Grp 
Incl Utilities in 
OTAG, not in 

NBP

Control Grp 
Incl Western 

Utilities

Control Grp 
Incl Utilities in 
Dereg States

(1) (2) (3) (4) (5) (6) (7) (8) (9)
0.26 0.23 0.35 0.24 0.46 0.29 0.22 0.29 0.26

(0.05) (0.05) (0.18) (0.11) (0.15) (0.12) (0.05) (0.07) (0.06)
0.01 -0.01 -0.03 0.00 -0.04 0.02 -0.01 0.01 0.00

(0.05) (0.05) (0.06) (0.06) (0.08) (0.06) (0.05) (0.05) (0.05)
0.13

(0.22)
0.28

(0.33)
Number of 
Observations 46 46 48 48 43 34 48 48 48

R2 0.27 0.28 0.27 0.27 0.23 0.28 0.25 0.28 0.27

Coal With 
Scrubbers

column 4 include all coal generators without scrubbers. Column 5 omits the five NBP firms affected by the EPA's New Source Review litigation: AEP, 
Dominion, Cinergy, Ohio Edison and Southern. Column 6 omits firms involved in mergers between 1995 and 2000 (see text). 

Natural 
Gas/Oil

Notes: Huber-White standard errors in parentheses. The dependent variable is the difference between counterfactual and actual stock prices, constructed 
as in Table 4, except in columns 7-9. Columns 7-9 report the same specification, using different utilities to construct the control group in equation (5). 
Column 7 includes utilities located in states participating in the Ozone Transport Assessment Group, but not included in the NBP. Column 8 includes 
utilities located in states that were not in the Ozone Transport Assessment Group. Column 9 uses utilities located in western states that had begun 
electricity restructuring in 2000 (see text). The independent variables are counts of generators in 1995, by type and region. All regressions are estimated 
by OLS. Column 1 includes the firm's change in profits between 1995 and 2000, and column 2 includes the change in revenues, obtained from 
Compustat. Counts of generators in Phase I of the Acid Rain Program and counts of coal generators with scrubbers were obtained from the DOE Acid 
Rain Program database (see text). Coal generators in column 3 include all coal generators not in Phase I of the Acid Rain Program. Coal generators in

Phase I Coal

Table 6

Potential Omitted Variables 

Dependent Variable: Difference Between Counterfactual And Actual Stock Prices

Coal



One Month 
Window

Estimate 
Equation (8) 
on 6/22/00

Include Post-
3/10/00 Obs 
in Estimation 

Period

End 
Estimation 

Period 
5/31/95

Begin 
Estimation 

Period 1/2/91

Omit Firms 
With 

Generators in 
OTC

Omit Obs 
With Extreme 
Values of Dep 

Var

Omit Obs With 
Extreme Coal 

Generator 
Counts

Median 
Regression

Generator 
Capacity by 
Fuel Type

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

0.27 0.29 0.25 0.25 0.35 0.19 0.25 0.43 0.19 0.63
(0.05) (0.05) (0.07) (0.09) (0.06) (0.06) (0.05) (0.10) (0.09) (0.15)

0.05 0.04 -0.05 -0.01 -0.07 -0.07 -0.01 -0.06 -0.04 0.61
(0.05) (0.06) (0.06) (0.08) (0.04) (0.05) (0.04) (0.06) (0.06) (1.10)

Number of 
Observations 48 48 48 48 48 23 44 44 48 48

R2 0.31 0.29 0.18 0.23 0.28 0.37 0.31 0.25 0.26

Natural 
Gas/Oil

Notes: Huber-White standard errors in parentheses. The dependent variable is the difference between the counterfactual and actual stock price, 
constructed similarly to Table 4. In column 1 the actual stock price on April 3 is subtracted from the counterfactual price. In column 2 the actual stock 
price on June 29 is subtracted from the counterfactual price. In column 3 equation (5) is estimated using observations from January 2, 1990 - December 
29, 1995 and from March 11, 2000 - December 31, 2000. Column 4 uses observations from January 2, 1990 - May 31, 1995 and column 5 uses 
observations from January 2, 1991 - December 29, 1995. The independent variables in columns 1-9 are counts of generators, by type and region. 
Column 10 uses generator capacity, in GW, by type and region. Columns 1-8 and 10 are estimated by OLS; column 9 is a median regression. Column 6 
includes utilities with fossil fuel generators in the NBP region. Column 7 omits utilities with the two largest and two smallest values of the dependent 
variable on March 10, 2000. Column 8 omits the four utilities with the largest and smallest numbers of coal generators in the NBP region.

Table 7

Additional Robustness Results

Dependent Variable: Difference Between Counterfactual And Actual Stock Prices

Coal




